X-18+1/2x+9+3x-81=180

Simple and best practice solution for X-18+1/2x+9+3x-81=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X-18+1/2x+9+3x-81=180 equation:



X-18+1/2X+9+3X-81=180
We move all terms to the left:
X-18+1/2X+9+3X-81-(180)=0
Domain of the equation: 2X!=0
X!=0/2
X!=0
X∈R
We add all the numbers together, and all the variables
4X+1/2X-270=0
We multiply all the terms by the denominator
4X*2X-270*2X+1=0
Wy multiply elements
8X^2-540X+1=0
a = 8; b = -540; c = +1;
Δ = b2-4ac
Δ = -5402-4·8·1
Δ = 291568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291568}=\sqrt{16*18223}=\sqrt{16}*\sqrt{18223}=4\sqrt{18223}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-4\sqrt{18223}}{2*8}=\frac{540-4\sqrt{18223}}{16} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+4\sqrt{18223}}{2*8}=\frac{540+4\sqrt{18223}}{16} $

See similar equations:

| 3.19.2+6.4x+x=59.78 | | 5x-7x-10=-2x+7-10 | | 5(x+2)=-20-2x | | 6•|x+6|=12 | | 19+5x+6/4=7 | | 3/2+3/5x=9/2+4/5x+5/4 | | 4x²-x-18=0 | | 18=3/4p | | 7(r−12)=49 | | 2(6x+3)=-3(16-3x) | | 4x^2-51x+49=0 | | 1/5(5y+10)-7=-1/8(16y-32) | | 5x-6(x+3)=19 | | 4k​ +5=8 | | x(50-2x)=x | | 2.4z+1.2z-6.5=0/7 | | 7^(4x+3)=35 | | 4a+13=17 | | 32=7|2c-6|+4=32 | | |3x+4|=|3x-5| | | 2y+1=5y-3=180 | | 0.8x+0.2(30)=0.5(x+30) | | 2p-5(p+3)=39 | | 25-y=14 | | (3=6x+2)+(4=8x-14) | | 3n+25+4n+29=180 | | 3=6x+2)+(4=8x-14) | | 93=6x+2)+(4=8x-14) | | 3=6x+2)+(4=8x-14 | | 2(5x+1)+4(-x+5)=34 | | (7x-20)+(3x+20)=180 | | 11(16–j)=22 |

Equations solver categories