X-(2/11*x)=666

Simple and best practice solution for X-(2/11*x)=666 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X-(2/11*x)=666 equation:



X-(2/11X)=666
We move all terms to the left:
X-(2/11X)-(666)=0
Domain of the equation: 11X)!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
X-(+2/11X)-666=0
We get rid of parentheses
X-2/11X-666=0
We multiply all the terms by the denominator
X*11X-666*11X-2=0
Wy multiply elements
11X^2-7326X-2=0
a = 11; b = -7326; c = -2;
Δ = b2-4ac
Δ = -73262-4·11·(-2)
Δ = 53670364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{53670364}=\sqrt{4*13417591}=\sqrt{4}*\sqrt{13417591}=2\sqrt{13417591}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7326)-2\sqrt{13417591}}{2*11}=\frac{7326-2\sqrt{13417591}}{22} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7326)+2\sqrt{13417591}}{2*11}=\frac{7326+2\sqrt{13417591}}{22} $

See similar equations:

| 3x+4+5=19 | | 8+3(n-9)=17 | | 11(n+-9)=17 | | 8x+5=11x-9 | | 25x+1+5=3x-10 | | 11-(n+-9)=17 | | 2a-5=a=3 | | 11+2x=5(−x+5)−49 | | ?x7=59 | | w-2.3=8 | | 23=10v-17 | | (0.5x+7)/8=5. | | 13=10+a | | 11*n+-9=17 | | 2(x+6)=3x+4= | | -3x-15=-2x-10 | | x+27/6=9x | | x-6=6x-10 | | (x+2)(2x2+9x+8)=x | | x/x-3=57 | | -9w=-9−10w | | 3x2+2x+9=0 | | e-7.3=0.34 | | -18=2a-22 | | -11x+5=-55x | | -8b-42=-18 | | 5b–2=2b+7 | | -8d+10=-10d−8 | | 8x+7x-57=95-4x | | -2/3x+5=20-1x | | -u/9=-29 | | m-0.4=2.33 |

Equations solver categories