If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+X2=256
We move all terms to the left:
X+X2-(256)=0
We add all the numbers together, and all the variables
X^2+X-256=0
a = 1; b = 1; c = -256;
Δ = b2-4ac
Δ = 12-4·1·(-256)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{41}}{2*1}=\frac{-1-5\sqrt{41}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{41}}{2*1}=\frac{-1+5\sqrt{41}}{2} $
| -2a+27+8a=4a-7a | | X+y2=256 | | 5+2x=2x+6-1 | | 5x+15-4x=1 | | -4a+18+a=3a-7a | | 2=+4×3x-5-3x | | -14+-5x+x^2=0 | | -22=v-20 | | 7=x+16 | | 14-b=15 | | x-10=-29 | | 18+m=6 | | -16+n=-26 | | -18=n-10 | | (x-2)=2(x+1) | | 9+r=0 | | 8x-3x+4=7x-42 | | (x-3)+3(x-4)=7x-10 | | 4t=t@ | | -23+5x=25+9x | | y/3+2/5=y/5+2/5 | | 5m+5=7m-3 | | 4(×+2)=3(x-5) | | -15+(-5y)=0 | | (Y-1.2)=0.5(x-9.6) | | -2u+u=-1u-8+-1u | | a-2/6=3 | | 7v+5=3v−11 | | T(1)=1T(n)=2T(n-1)+n,n=2 | | T(n)=2T(n-1)+n,n=2 | | y=-7(15)=5 | | 3+x/−2=10 |