X+x1+x2=423

Simple and best practice solution for X+x1+x2=423 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+x1+x2=423 equation:



X+X1+X2=423
We move all terms to the left:
X+X1+X2-(423)=0
We add all the numbers together, and all the variables
X^2+2X-423=0
a = 1; b = 2; c = -423;
Δ = b2-4ac
Δ = 22-4·1·(-423)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{106}}{2*1}=\frac{-2-4\sqrt{106}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{106}}{2*1}=\frac{-2+4\sqrt{106}}{2} $

See similar equations:

| -5(v+5)=5v+15 | | 18^2+15x+5=0 | | -9(x-1)=8x+26 | | 4w=18+1w | | 5y=20y | | 15z=6z+27 | | 6x+1=5+7x | | -5(-3w+5)-2w=3(w-1)-8 | | 7x=822 | | 4x+3=11-2x | | -14=5(x-7)-8x | | 3n-15=n-7 | | 3z+147=180 | | -5(-3w+5)-2w=3(w-1) | | U-8+2(2u+9)=-5(u+1) | | n-1=-13-3n | | 2y-5=147 | | p+2=-4+4p | | n+5=5-3n | | 5p+3=-9-2p+5p | | 96=5v+11 | | -16=2v-1 | | -2(v-9)=-9v+39 | | v+3=3v-7 | | 4v+6-5v-16=-2v-2 | | 70+17-12u=-38 | | 2x-4=8x-7x | | w÷-7=-21 | | x-4=-12+8x-6x | | 4(x-6)=-13x-31 | | -9x+29=4(x-9) | | v+2=4v+5 |

Equations solver categories