If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+5=(1/2)(X+2)
We move all terms to the left:
X+5-((1/2)(X+2))=0
Domain of the equation: 2)(X+2))!=0We add all the numbers together, and all the variables
X∈R
X-((+1/2)(X+2))+5=0
We multiply parentheses ..
-((+X^2+1/2*2))+X+5=0
We multiply all the terms by the denominator
-((+X^2+1+X*2*2))+5*2*2))=0
We calculate terms in parentheses: -((+X^2+1+X*2*2)), so:We add all the numbers together, and all the variables
(+X^2+1+X*2*2)
We get rid of parentheses
X^2+X*2*2+1
Wy multiply elements
X^2+4X*2+1
Wy multiply elements
X^2+8X+1
Back to the equation:
-(X^2+8X+1)
-(X^2+8X+1)=0
We get rid of parentheses
-X^2-8X-1=0
We add all the numbers together, and all the variables
-1X^2-8X-1=0
a = -1; b = -8; c = -1;
Δ = b2-4ac
Δ = -82-4·(-1)·(-1)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{15}}{2*-1}=\frac{8-2\sqrt{15}}{-2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{15}}{2*-1}=\frac{8+2\sqrt{15}}{-2} $
| -300=-8x^2-15x | | 3(4a+2)=2(a+2) | | 3.75=5h+.50 | | 6(x-4)-8x=-12 | | 5x+6=4x+6+x-9 | | 5-8m-6m=15-7m-9m | | 10y-10=22 | | -121=2(1-7n)-7 | | -6n-2n=8 | | 2x+2x+3x+6=180 | | x2+225=0 | | 18a-42=15a-18 | | -8n-19=-2(8n-3)=3n | | (x+5)×□=3x+15 | | -1x/17=x | | 9+3p=1-5p-2 | | 28-7x=-4(-7x-7 | | 29+7n=6n+24 | | 3x+(x-15)+(x+30)=180 | | 3x-40=2x+1 | | (37x6)x5=37x(6x5) | | 1/4=1/2t=4 | | -4(3r+5)=0 | | -5=3/1/2x | | u^2+10-24=0 | | 2s+4=5(-4 | | |x|-6=1 | | u^+10-24=0 | | 40=5s | | X+3+2x+5=52 | | 1/4(x-6)=2/3x-8 | | 9/4x-x=-25/12 |