If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+3X^2=180
We move all terms to the left:
X+3X^2-(180)=0
a = 3; b = 1; c = -180;
Δ = b2-4ac
Δ = 12-4·3·(-180)
Δ = 2161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2161}}{2*3}=\frac{-1-\sqrt{2161}}{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2161}}{2*3}=\frac{-1+\sqrt{2161}}{6} $
| 7(h-4)=56 | | f/5/9=1/5 | | 1/2*q=4 | | 2(x+1)^2-1=72 | | 4(3x+9)=3(x+45) | | 23=-16t^2+17t+5 | | 14.1/6=s | | r*6/7=7 | | u-1/2=1/2 | | 4+x+x=12.5 | | 2x+1=7x−99 | | ∘2x+1∘=7x−99∘ | | b+3/4=4 | | 5x+27+2x+45+2x+45=180 | | 5/16=25/y | | 4.5/9=w | | w*6/7=4 | | 2x+32+3x+25=180 | | 2.5-4=x+5 | | 5^2x=9^x-1 | | 7/10+t=10 | | 7*3/5=b | | 8-2m=m(2) | | b/3/5=7 | | m+4.7=6.7 | | s-3.7=0.6 | | 2x^2−4x+7=0 | | c/1.5=6 | | 3^2x=29 | | 2x+18=x-6 | | 1/9+c=4/9 | | w-0.25=0.35 |