X+3/x+7x/x+3=23/4

Simple and best practice solution for X+3/x+7x/x+3=23/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+3/x+7x/x+3=23/4 equation:



X+3/X+7X/X+3=23/4
We move all terms to the left:
X+3/X+7X/X+3-(23/4)=0
Domain of the equation: X!=0
X∈R
We add all the numbers together, and all the variables
X+3/X+7X/X+3-(+23/4)=0
We get rid of parentheses
X+3/X+7X/X+3-23/4=0
We calculate fractions
X+(28X+3)/4X+(-23X)/4X+3=0
We multiply all the terms by the denominator
X*4X+(28X+3)+(-23X)+3*4X=0
Wy multiply elements
4X^2+(28X+3)+(-23X)+12X=0
We get rid of parentheses
4X^2+28X-23X+12X+3=0
We add all the numbers together, and all the variables
4X^2+17X+3=0
a = 4; b = 17; c = +3;
Δ = b2-4ac
Δ = 172-4·4·3
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{241}}{2*4}=\frac{-17-\sqrt{241}}{8} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{241}}{2*4}=\frac{-17+\sqrt{241}}{8} $

See similar equations:

| 3p^2+4p+9=0 | | 1/2x-5=1/8x+7 | | 5=3q | | 4x+1=2(2x-9) | | 4x+16-x=22÷6 | | 7x+7=13x-7 | | -x-39-4x=81 | | 0,25x2-0,5x-0,25=1 | | X-1/10=x+2/8 | | 5x-3(x-2)=-3+5x-6 | | 6=3(c–6) | | 7x+56=6x+25 | | 2*5e+-14=21 | | 13j–13=13 | | 1/2(6x-4)=-5x+1 | | 17+7x=24# | | 3(9=4x-5) | | m-8(5/6)=12(1/7) | | 2/5e+-14=21 | | x=650-2x/12 | | -x-82-6x=23 | | y=-9-14 | | -5x-3x(-2x-13)=47 | | X/3=2x/18 | | 4(t–16)=8 | | 47=-5x-3x(-2x-13) | | 4x-5(x-2)=11x+22 | | 15=6+3q | | 20^3+x^2-42x+441=0 | | 2x2+9x-48=x2+7x | | k^2+14k-22=6 | | m-85/6=121/7 |

Equations solver categories