If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+21=(3X+8)(2X+1)
We move all terms to the left:
X+21-((3X+8)(2X+1))=0
We multiply parentheses ..
-((+6X^2+3X+16X+8))+X+21=0
We calculate terms in parentheses: -((+6X^2+3X+16X+8)), so:We add all the numbers together, and all the variables
(+6X^2+3X+16X+8)
We get rid of parentheses
6X^2+3X+16X+8
We add all the numbers together, and all the variables
6X^2+19X+8
Back to the equation:
-(6X^2+19X+8)
X-(6X^2+19X+8)+21=0
We get rid of parentheses
-6X^2+X-19X-8+21=0
We add all the numbers together, and all the variables
-6X^2-18X+13=0
a = -6; b = -18; c = +13;
Δ = b2-4ac
Δ = -182-4·(-6)·13
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{159}}{2*-6}=\frac{18-2\sqrt{159}}{-12} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{159}}{2*-6}=\frac{18+2\sqrt{159}}{-12} $
| 2x-3/3+1/2=5/6 | | 1/x+2/x^2=x+9/2x^2 | | 10(8x-2)=-5(x+5) | | 191-w=81 | | 7x-3/12=12x | | -15+4x=3(25x+29)-x | | 33m=15 | | 19w=13 | | 5x+3+4x-26=7x+7,x | | 4(x-5)=x+-11+3x | | 11+6x=5(18x+14)+x | | 0.25x+0.05(18-x)=0.10x(-19) | | 0.2x-6=6 | | 23z=7 | | 20x+(-6)=10x+9 | | |2x+6|=|3x-6| | | 6y^2-23y-9=0 | | 2/7x+6/7=6/7 | | 18x+(-14)=6x=36 | | -12=2/7x | | 3x+(-2)=6x=7 | | 18x-2+76=36x+2,x | | 5x+(-15)=-9 | | x-3/2=3/8 | | 2x^2+-6x+-9=0 | | 10x+(-6)=-5 | | -9=z-8 | | v-4.48=9.64 | | 4/(x+1)=x/5 | | y-11/19=-2/19 | | 16x+(-5)=-3 | | x/4+x/2=150 |