X+2/x-1+x-1/x+2=5/2

Simple and best practice solution for X+2/x-1+x-1/x+2=5/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+2/x-1+x-1/x+2=5/2 equation:



X+2/X-1+X-1/X+2=5/2
We move all terms to the left:
X+2/X-1+X-1/X+2-(5/2)=0
Domain of the equation: X!=0
X∈R
We add all the numbers together, and all the variables
X+2/X+X-1/X-1+2-(+5/2)=0
We add all the numbers together, and all the variables
2X+2/X-1/X+1-(+5/2)=0
We get rid of parentheses
2X+2/X-1/X+1-5/2=0
We calculate fractions
2X+()/2X+(-5X)/2X+1=0
We multiply all the terms by the denominator
2X*2X+(-5X)+1*2X+()=0
We add all the numbers together, and all the variables
2X*2X+(-5X)+1*2X=0
Wy multiply elements
4X^2+(-5X)+2X=0
We get rid of parentheses
4X^2-5X+2X=0
We add all the numbers together, and all the variables
4X^2-3X=0
a = 4; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*4}=\frac{0}{8} =0 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*4}=\frac{6}{8} =3/4 $

See similar equations:

| 4x-28=4(2x-4) | | 2(x+1)=6+1.5x | | 9x-2=16+6x | | 2(5-d)=2-4d2(5−d) | | 3^(2x-1)=1/243 | | x+229=748 | | 7x+2=3x-20 | | x+78=357 | | 15*z=32-z | | x/0,975=3000000 | | 6y-18`=6 | | a=6+1 | | 2x-10+x+30=90 | | 7x+5=4×+11 | | 8+2-2(2-4)-x=-5+28-x | | 29+x(x-4)=(x+3)^2 | | 12y/6+5=11 | | 3y/9-1=2 | | 15s²-7s-2=0 | | X^2-y^2=1089 | | 12x+6=6x-12 | | (4x-2)+3x=54 | | -16x^2+136x=0 | | 7x+5x-3=9 | | y=7*(1,89)-11 | | x-3=7(x+3)-3(2-x) | | y=7(1+8/9)-11 | | 7x-11=-2x+6 | | 3+2x=46 | | 5x-2x+6=48 | | X²-10x-21=0 | | (x+2)/2x+(x+2)/4=-1/2 |

Equations solver categories