X+(x-46)+(x-35)+(1/2)x=360

Simple and best practice solution for X+(x-46)+(x-35)+(1/2)x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+(x-46)+(x-35)+(1/2)x=360 equation:



X+(X-46)+(X-35)+(1/2)X=360
We move all terms to the left:
X+(X-46)+(X-35)+(1/2)X-(360)=0
Domain of the equation: 2)X!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
X+(X-46)+(X-35)+(+1/2)X-360=0
We multiply parentheses
X^2+X+(X-46)+(X-35)-360=0
We get rid of parentheses
X^2+X+X+X-46-35-360=0
We add all the numbers together, and all the variables
X^2+3X-441=0
a = 1; b = 3; c = -441;
Δ = b2-4ac
Δ = 32-4·1·(-441)
Δ = 1773
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1773}=\sqrt{9*197}=\sqrt{9}*\sqrt{197}=3\sqrt{197}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{197}}{2*1}=\frac{-3-3\sqrt{197}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{197}}{2*1}=\frac{-3+3\sqrt{197}}{2} $

See similar equations:

| 3/7b=-3 | | 5-8y=-23+y+1 | | 10x+8=-4 | | 15-2(3-2x)=39 | | 8+10x-1=20x-1 | | -5-6r=2-7(1-6r) | | 4.5a=a | | 4/x+3+3=19/x+3 | | -2(-c-20)=-2c-2-0 | | 3b+3+1=19 | | 9x-(6x-10)=34 | | 7m+4=-17 | | 2^0.6x-3=0 | | 1+8x=–16–2x–7x | | ×2-8x+15=0 | | 9y-7=23-2y | | X^2+20x+10000=0 | | 20+8x=6x+30 | | 9x+21+3x=8 | | (X*D2+D)y=0 | | 3-4x=x-9 | | 3(6-4x)=2(-6x=9) | | 2x-10+x=50 | | 0.2x=2-x | | 6x^2=118 | | t+3/4=6/3/4 | | t+3/4=6/63/4 | | -1/2a-2=-17/4 | | 5w+8=12w=16-15w | | 6x+238°=3x+178° | | P(x)=0.2^2+10000x+75000 | | 115+10x=29x+1 |

Equations solver categories