If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+(X+45)+90+(2X-90)+3/2X=540
We move all terms to the left:
X+(X+45)+90+(2X-90)+3/2X-(540)=0
Domain of the equation: 2X!=0We add all the numbers together, and all the variables
X!=0/2
X!=0
X∈R
X+(X+45)+(2X-90)+3/2X-450=0
We get rid of parentheses
X+X+2X+3/2X+45-90-450=0
We multiply all the terms by the denominator
X*2X+X*2X+2X*2X+45*2X-90*2X-450*2X+3=0
Wy multiply elements
2X^2+2X^2+4X^2+90X-180X-900X+3=0
We add all the numbers together, and all the variables
8X^2-990X+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 12=42/x | | (x+1)²=9 | | --3b-7-2b+4=-18 | | –7(y+4)=–5y-2y-3 | | (3x-2)+(4x+7)=8x-12 | | 19-5a=2a+10 | | 4+10x=4(x+9) | | 1x+13=12 | | `x^2+2x-8=0` | | -3x+6x-6=3(x-2)-4 | | 9m-11=2-2+9 | | -25=1/2(10×-2)+3x | | -17-2×=6-x | | x^2+2x+2=4x+4 | | 1w-2(8-w)=-31 | | h+2•3.14=3•3.14 | | -8r+16=-40 | | -21=7x-14 | | -2x+6-9+4x-x=5+2 | | 7=x/9-8 | | 1/3(x)+4=x-2 | | 14+2p=78 | | x/4-11=-15 | | 6.5=7.7-0.6x | | x^2-22x+11=-10x | | 7x+17=8x-7+19 | | 4x(3x-2)=-5 | | 3/2x+6=8 | | 1/1x+1=1/5 | | 1/1x=1/5 | | 7/4+634m/5=63/20 | | 54+3x=6x |