If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+(X+1)(X+2)=45
We move all terms to the left:
X+(X+1)(X+2)-(45)=0
We multiply parentheses ..
(+X^2+2X+X+2)+X-45=0
We get rid of parentheses
X^2+2X+X+X+2-45=0
We add all the numbers together, and all the variables
X^2+4X-43=0
a = 1; b = 4; c = -43;
Δ = b2-4ac
Δ = 42-4·1·(-43)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{47}}{2*1}=\frac{-4-2\sqrt{47}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{47}}{2*1}=\frac{-4+2\sqrt{47}}{2} $
| 2(7n-3)-6n=5(n-6) | | 7e/10=-7 | | -8(8+4r)-5r=26-7r | | a^2+2a^2=9 | | 5(7r-8)=-5r-40 | | 6x–9–2(1+x)=x–9 | | 0.10x+0.45•50=31.5 | | 25+a=5a+3 | | 5x+4(1-5x)=64 | | ⅔x=98 | | 5x-4(1-5x)=64 | | 1.5=(5-x)/4 | | 6/12=8/n | | 5(2x+8)=49+49 | | 6x-34=16x-26 | | -5(-4+3b)=65 | | 2x2–4=14 | | 3+4x=6x+8 | | 6+42x=5 | | 5m+3÷4=12 | | 10-10b=8 | | V(3r)=4/3 | | 344-8=n | | V(r)=4/3 | | 1-6n-8-9=2n-6-9n | | V(r)=43 | | 138+2=n | | 12x(-1.2)= | | -37=-7x-2 | | 65+5=n | | X²-6x+135=0 | | 17+8=-5(9x-5) |