If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-40)=180
We move all terms to the left:
X(X-40)-(180)=0
We multiply parentheses
X^2-40X-180=0
a = 1; b = -40; c = -180;
Δ = b2-4ac
Δ = -402-4·1·(-180)
Δ = 2320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2320}=\sqrt{16*145}=\sqrt{16}*\sqrt{145}=4\sqrt{145}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{145}}{2*1}=\frac{40-4\sqrt{145}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{145}}{2*1}=\frac{40+4\sqrt{145}}{2} $
| -9b-10=b+10+10 | | -7x+10=5x+10 | | (3x-7)2-4(3x-7)-12=0 | | 4r-2r=-14+4r | | -3(3.14)=-t/4 | | 8d=-10+9d | | 3-3x=-8(3x-3) | | 3x+10=130-7x | | -61=5x-4 | | 3x-1=2x+39 | | 3+8y=y-4 | | 2.5-0.03x=-0.62 | | 2x-8=47 | | -4x+1=-47+4x | | 2x+9=7x-99 | | -v+8=-2+9v | | 7x-5=8× | | 245-35x=0 | | -4-2c=10 | | 8x-15-3x=20 | | -6n=-5n-4 | | -7-10j=5+2j | | -9x+22=58 | | 3x+8=-13-4x | | Y=3+³√x-8 | | 1x=40 | | |6x+4|=40 | | 5=s/3+4 | | 7-9m=-10m | | 4(2x+3)=16x+2-8x+9 | | 2.5m=m=4 | | -6f-7=-7f |