X(x-3)=(x+4)+2

Simple and best practice solution for X(x-3)=(x+4)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X(x-3)=(x+4)+2 equation:



X(X-3)=(X+4)+2
We move all terms to the left:
X(X-3)-((X+4)+2)=0
We multiply parentheses
X^2-3X-((X+4)+2)=0
We calculate terms in parentheses: -((X+4)+2), so:
(X+4)+2
We get rid of parentheses
X+4+2
We add all the numbers together, and all the variables
X+6
Back to the equation:
-(X+6)
We get rid of parentheses
X^2-3X-X-6=0
We add all the numbers together, and all the variables
X^2-4X-6=0
a = 1; b = -4; c = -6;
Δ = b2-4ac
Δ = -42-4·1·(-6)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{10}}{2*1}=\frac{4-2\sqrt{10}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{10}}{2*1}=\frac{4+2\sqrt{10}}{2} $

See similar equations:

| 4n=2=6(1/3n-2/3 | | X(x-3)=x(+4)+2 | | -2x-7x+1;x=3 | | 95=3-4(1+3x) | | 4(y+5)-6y=18 | | x+x+1+x+2+x+3+x+4=505 | | 3x-20=4x+11 | | M=7p+34;p=3 | | 3x+8=4(3x-7) | | 74.50=38.50x+6.50 | | 3x+2+5x-10=40 | | 3x+2+5x-10=50 | | Y=3.2x=2 | | 2x+40=34 | | 3x+2+5x-10=60 | | 7=c-2 | | 9+7q=13=6q | | 74.25=6.50x+38.50 | | -7v+3(v-3)=-21 | | 3x−1=−2x+39 | | 3(8x-5)+11=24x-12 | | -7v=3)v-3)=-21 | | 4nn=0.78 | | 7/9x+3=-2/9x | | .8(3x+2)=2(12x–5) | | m+1/3=1 | | 44=t-17 | | 4y=14.8 | | 6x+16+14x+4=180 | | -3=9v+6 | | 2/3=5=20-b | | 8x-6=-4x-78 |

Equations solver categories