If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-20)=5000
We move all terms to the left:
X(X-20)-(5000)=0
We multiply parentheses
X^2-20X-5000=0
a = 1; b = -20; c = -5000;
Δ = b2-4ac
Δ = -202-4·1·(-5000)
Δ = 20400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20400}=\sqrt{400*51}=\sqrt{400}*\sqrt{51}=20\sqrt{51}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{51}}{2*1}=\frac{20-20\sqrt{51}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{51}}{2*1}=\frac{20+20\sqrt{51}}{2} $
| -4(x-18)=-20 | | -4(x-18)=-12 | | x(x−12)=13 | | 5x-25=20x+50 | | 9x+6=12x+6 | | 5y(y+9)=3(y+9) | | (88-2x)(90+5x)=0 | | 49t2+9=0 | | 5x2+50×=-125 | | (x+3/4)=-11 | | 6x=8=4x+50 | | 90+x=158 | | 130+(2x+6)=180 | | 144+12y=180 | | 5x/5=100 | | 2w+2(4.25+w)=124.5 | | -4=3w-8 | | 4-11m=11 | | 22=18-2x | | 160x+14000=-200×+24000 | | 5x+4/5x-4+5x-4/5x+4=13/6 | | 10t+3=-13 | | 12n/6+7=9 | | 10x^2-5x=105 | | 10x-5x=105 | | 12/5v-7/4=111/20-5/4v | | 11+x=2x+5 | | 3(6-2x)=4(1-5x) | | 5y-8y=15y | | 20=7k-8k | | 3(x+2-6)=7 | | x-(20-x)=2 |