If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+6)=562
We move all terms to the left:
X(X+6)-(562)=0
We multiply parentheses
X^2+6X-562=0
a = 1; b = 6; c = -562;
Δ = b2-4ac
Δ = 62-4·1·(-562)
Δ = 2284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2284}=\sqrt{4*571}=\sqrt{4}*\sqrt{571}=2\sqrt{571}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{571}}{2*1}=\frac{-6-2\sqrt{571}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{571}}{2*1}=\frac{-6+2\sqrt{571}}{2} $
| Y=81x=41 | | .50q=-24 | | 5(2r–3)=10r–15 | | 6.1x-2.1x-4.2=3x+4.5 | | Y(2x+6)=48 | | 4-7n=20+3n | | 5r+2r+2r+r-7r=6 | | n/5=16/32 | | 2s-24=36 | | 13x5=29 | | 3m=46 | | (11x-10)=10x | | 5x+19=12x-6 | | 3h+5h-3h+2h=14 | | 2x^2+13=29 | | 24+(2x=18) | | x=(x^2+x)^10 | | x^2+129=180 | | 10-9y+4y=5 | | x+x+129=180 | | 5(c+4/5)+6=5c | | 12x+0.5x=7900 | | -1/3x^2+6=-26 | | x=(x^2+x)^58 | | 2v+2v+v-4v+3v=12 | | 3(2+3x)-2(4×+10)=48 | | 30=3(x/2+4) | | x+12+5x=48 | | 0.5(2a-12)=24 | | 90-x=5 | | (18x+2)+(11x+4)=180 | | (12x-3)/x=3 |