If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(1/4)+X(1.5)=99
We move all terms to the left:
X(1/4)+X(1.5)-(99)=0
We add all the numbers together, and all the variables
X(+1/4)+X(1.5)-99=0
We multiply parentheses
X^2+1.5X-99=0
a = 1; b = 1.5; c = -99;
Δ = b2-4ac
Δ = 1.52-4·1·(-99)
Δ = 398.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{398.25}}{2*1}=\frac{-1.5-\sqrt{398.25}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{398.25}}{2*1}=\frac{-1.5+\sqrt{398.25}}{2} $
| 99=x1/4+x1.5 | | 11450x(x)=11450 | | 41d-12-16d=48 | | 1.5x+0.4x+1=100 | | 465x-479=-684x | | –4v+7=–9 | | 1.5p=7 | | m4− –9=13 | | 5(e-1)=3e+3 | | X-2/4=3-2x/5 | | a(12)=50-1.25 | | a(12)=50-1.25 | | a(12)=50-1.25 | | a(12)=50-1.25 | | c+80°=180 | | 10=-1/35t | | r+r+9=28 | | 1600=1.06^n | | y+y+14=50 | | 8x3+8x2-3=0 | | 25^x-5=5^4x | | x+54+104=180 | | 2+1/x+2=9/x+2 | | y+122=180 | | 9/5(f-32)=44 | | -y/5+4= 14 | | (x-14)*10=100 | | 2(4s+4)=88 | | (u-4)*10=50 | | 3(5x-44)=4-3(x+5) | | u=u-50+u-50 | | 10x+10-3x=-6x-20+x |