If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(-17)-18X=(X-3)(X+16)
We move all terms to the left:
X(-17)-18X-((X-3)(X+16))=0
We add all the numbers together, and all the variables
-18X+X(-17)-((X-3)(X+16))=0
We multiply parentheses
-18X-17X-((X-3)(X+16))=0
We multiply parentheses ..
-((+X^2+16X-3X-48))-18X-17X=0
We calculate terms in parentheses: -((+X^2+16X-3X-48)), so:We add all the numbers together, and all the variables
(+X^2+16X-3X-48)
We get rid of parentheses
X^2+16X-3X-48
We add all the numbers together, and all the variables
X^2+13X-48
Back to the equation:
-(X^2+13X-48)
-35X-(X^2+13X-48)=0
We get rid of parentheses
-X^2-35X-13X+48=0
We add all the numbers together, and all the variables
-1X^2-48X+48=0
a = -1; b = -48; c = +48;
Δ = b2-4ac
Δ = -482-4·(-1)·48
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{39}}{2*-1}=\frac{48-8\sqrt{39}}{-2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{39}}{2*-1}=\frac{48+8\sqrt{39}}{-2} $
| 3a=96 | | 6-2(8x+3)=5 | | 4(2b-4=7b+2 | | 7/8=x/2 | | 1/3x12=24 | | 6(2p-12=10p+2 | | 1/4=1/5x | | 10x-77=18 | | y/4-6=8 | | 4/7=x/3 | | -5(2x/3-1/2)=-10 | | 2/3=3x/5 | | 3x+2-7=11-3x | | 4(u-6)-7u=3 | | 2x+10=6x,12x | | |3x|=12 | | 4/6=a/18 | | 8g+2g-10g+2g=6 | | 3.4+n=48 | | 2/3y-9=5y+4 | | 5(4-7x)=-4-48 | | 18/48=g/40 | | 16/4=8/n | | 4n-1=-2-n | | -3p+8=p+8 | | X=6×3.14×j | | 1080=1000+1000r2 | | 26=3x+x/4 | | 2x+10=6x,12x= | | 6v-4=92 | | 2s-7=-3(2s-1) | | (2r-2)(-1r-7)=0 |