If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=105
We move all terms to the left:
X^2+X^2-(105)=0
We add all the numbers together, and all the variables
2X^2-105=0
a = 2; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·2·(-105)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{210}}{2*2}=\frac{0-2\sqrt{210}}{4} =-\frac{2\sqrt{210}}{4} =-\frac{\sqrt{210}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{210}}{2*2}=\frac{0+2\sqrt{210}}{4} =\frac{2\sqrt{210}}{4} =\frac{\sqrt{210}}{2} $
| 3=(-1.5n) | | (3x+17)+(5x-5)=180 | | (x+10)=50 | | R=4x-50 | | -7-6b=9-10b | | -2d+11d-4=-4+9d | | 1/4p*3/8p=4 | | -9y-20=-56 | | -6-4w=-5w | | 136=3x-5(6x+16) | | 3+10)9x+4)=763 | | -10=t-2 | | -9k-13=-8k | | -3(2x-7)=-8+39 | | 6=7x+2x+6 | | (3-x)+(2x)=30 | | 6(w+7)=22+4w | | 9c2+5=18c | | 2w-8=48 | | r=310 | | -7(7x-7)=49x+49 | | 5n^2+10n+15=0 | | 12t=28 | | .5x+8-10=6 | | |3x|+11=44 | | 96=2z+42 | | 3v+5v+9=2(4v-6) | | 0.32y-4.52=3.9 | | 3v+5v+9=2(4v-9) | | -10h+11=-17-17h | | 5n+15=3n+29 | | 13+32=-5(6x-9) |