If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+200X-2400=0
a = 1; b = 200; c = -2400;
Δ = b2-4ac
Δ = 2002-4·1·(-2400)
Δ = 49600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49600}=\sqrt{1600*31}=\sqrt{1600}*\sqrt{31}=40\sqrt{31}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-40\sqrt{31}}{2*1}=\frac{-200-40\sqrt{31}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+40\sqrt{31}}{2*1}=\frac{-200+40\sqrt{31}}{2} $
| 11^(x-4)=440 | | 8x+3x=-24 | | 6^7t-1=36 | | 4x-8=4x−8=7x-27x−2 | | 5w+23=-2(w-8) | | 5v^2+41v=-42 | | 10(10m+6)=12 | | X(x)=98 | | 4=3u-17 | | 3x-10+x=24-12 | | x^+163x=870 | | 104=2(w)+2(14+L) | | 0.6x+29=7 | | 5=5m-23=2m | | 4(2x=3)=993x-5) | | 2(x+3)=9(4x-7) | | 5x+5=11x-65=90 | | 4(x+3)-11(x-7)=4(5x+12) | | 6-5x=4x-5 | | 12x+48=20x | | 4(22+3)=9(3x-5) | | 169=3x | | a^2+2a+1-a^2=45 | | 31/6=2/3p | | -13x-12=2x-12 | | 6=2.5m | | 518b=14 | | 5.18b=14 | | -3/4+y=1/8 | | -23.4=-2.6x | | 5/8=v+3 | | 7t−4t+4t=7 |