If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+10X=133
We move all terms to the left:
X^2+10X-(133)=0
a = 1; b = 10; c = -133;
Δ = b2-4ac
Δ = 102-4·1·(-133)
Δ = 632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{632}=\sqrt{4*158}=\sqrt{4}*\sqrt{158}=2\sqrt{158}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{158}}{2*1}=\frac{-10-2\sqrt{158}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{158}}{2*1}=\frac{-10+2\sqrt{158}}{2} $
| -4×+5=11-4x | | 6n-2=-2+6n | | -4(1-3v)=-6v-4 | | v+3=v-5 | | x(x+2)=(x+1) | | 5x-3(x-2)=3x+7 | | -2b-8=-7b+b | | 2x/x+4=5-8/x+4 | | 7x-1(3x+5)-8=1.5(8x+20)-7x+5 | | (1/x-3)+3=13/x-3 | | Y+1=2y+7 | | 3+8n=3+8n | | 3^2x=212 | | 20x²÷5x=4x | | +12y=2(6+6y)= | | 71.9x=22663 | | P-6=-6-5p | | 4/7x+10=-23 | | ?+12y=2(6+6y) | | 63=3(1-2n | | 79.3x=23271 | | 4y+8y=y | | -2(x+1)=-2-2x | | x+69.3=10208 | | t=3.14^3 | | 2x+6=5-6x | | -4p-1=-4p-1 | | x+8x/5=52 | | 12x-8+7x+32=180 | | 5(b+6)=32+5b | | 0-3/2y=-2 | | 12x-(4x-6)=3x-(9-27) |