If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100X-8000=0
a = 1; b = 100; c = -8000;
Δ = b2-4ac
Δ = 1002-4·1·(-8000)
Δ = 42000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{42000}=\sqrt{400*105}=\sqrt{400}*\sqrt{105}=20\sqrt{105}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{105}}{2*1}=\frac{-100-20\sqrt{105}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{105}}{2*1}=\frac{-100+20\sqrt{105}}{2} $
| 3x/3=105/3= | | 4x²=54 | | |3x+7|=5x-1 | | 4t+3=2t+6 | | y′′-6y′-y=0,y(0)=11y′(0)=28 | | y′′+6y′+y=0,y(0)=11y′(0)=28 | | 3n+2=-2n- | | -(6h+-7)+8=-19 | | 2-6(-10p-8)=60p+50 | | (A)5y-4=14 | | 5r+3=r | | (U-1)^2=2u^2-3u-5 | | 4r=12-4r | | -1/2x+5=2x-7 | | 4x+2-3x4=17/2 | | 2,5x+10=1,5x | | 124x+232=360 | | ^2+y^2=65 | | 320=40/100×x | | 5÷4x-(2+x)=x-5 | | z-6.2=13.5 | | 4x+2-3(x-4)=19(x-4) | | -x+9+7(x-4)=2-x | | ×=10b | | 7n-6.3=12 | | 7x+15=3x-45 | | 2x-3=x/2-2x=2 | | 2x-3=x/2-2 | | 7y=2*3/4=1/2 | | 4/5x-2=4 | | 3(x-2)+4(x+3)=6(x+1) | | 2h=-1 |