W-1/w+2=w-5/w+3+1

Simple and best practice solution for W-1/w+2=w-5/w+3+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for W-1/w+2=w-5/w+3+1 equation:



-1/W+2=W-5/W+3+1
We move all terms to the left:
-1/W+2-(W-5/W+3+1)=0
Domain of the equation: W!=0
W∈R
Domain of the equation: W+3+1)!=0
We move all terms containing W to the left, all other terms to the right
W+1)!=-3
W∈R
We add all the numbers together, and all the variables
-1/W-(W-5/W+4)+2=0
We get rid of parentheses
-1/W-W+5/W-4+2=0
We multiply all the terms by the denominator
-W*W-4*W+2*W-1+5=0
We add all the numbers together, and all the variables
-2W-W*W+4=0
Wy multiply elements
-1W^2-2W+4=0
a = -1; b = -2; c = +4;
Δ = b2-4ac
Δ = -22-4·(-1)·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*-1}=\frac{2-2\sqrt{5}}{-2} $
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*-1}=\frac{2+2\sqrt{5}}{-2} $

See similar equations:

| 5x^2+1.4x-2=0 | | 7x-35=5x+15 | | 3x2-12x-15=0 | | 3x^2-19=281 | | 9(x-1)=3/4 | | 0.2/3y=1.6/2 | | x-x*x/100=21 | | x-x/100=21 | | 9-7x^2=-103 | | 3-1/2x=1/4x | | 5(5x-4)+3=-10 | | 2*2+3y=9 | | -3+13y+8=14+16y-24 | | 5x-7=2x+32 | | 2×2+3y=9 | | 15+2x^2=113 | | 2x^2+15=113 | | 6-(x/7)=8 | | 1/5a=7/15 | | 7-(x/5)=-11 | | 8-(x/7)=-6 | | 1694/x+14=25 | | √1964/x+14=25 | | -8+4x^2=8 | | 3+3x^2=111 | | 5^(x)=2/13 | | 2x*3x+2=46 | | 9x−8=5x−12 | | 3n+-3=24 | | 6+2x^2=24 | | ⅔(3x-5)-3/5(2x-3)=3 | | ⅔(3x-5)-¾(2x-3)=3 |

Equations solver categories