If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=36V(9-7)-24(7)(2(9)-3(7))+2(9)(-2(3(9)+(7)))
We move all terms to the left:
-(36V(9-7)-24(7)(2(9)-3(7))+2(9)(-2(3(9)+(7))))=0
We add all the numbers together, and all the variables
-(36V2-247(-8)+29(-246))=0
We calculate terms in parentheses: -(36V2-247(-8)+29(-246)), so:We get rid of parentheses
36V2-247(-8)+29(-246)
We add all the numbers together, and all the variables
36V^2-5158
Back to the equation:
-(36V^2-5158)
-36V^2+5158=0
a = -36; b = 0; c = +5158;
Δ = b2-4ac
Δ = 02-4·(-36)·5158
Δ = 742752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{742752}=\sqrt{144*5158}=\sqrt{144}*\sqrt{5158}=12\sqrt{5158}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5158}}{2*-36}=\frac{0-12\sqrt{5158}}{-72} =-\frac{12\sqrt{5158}}{-72} =-\frac{\sqrt{5158}}{-6} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5158}}{2*-36}=\frac{0+12\sqrt{5158}}{-72} =\frac{12\sqrt{5158}}{-72} =\frac{\sqrt{5158}}{-6} $
| 2.2=0.2k | | 12x-9=7x+8 | | 2(y+2)=4(y+3 | | 47-3x=32x=5 | | 2+x+2x+4=x+16* | | 6=3.3+c | | 3x^2+392=17 | | -21-8a=-1+6-30a | | -8n=+20n | | 38+7q=8(q+4) | | 2/7x=49 | | -8=2(y-7)-8y | | Y=16•1.5xx=3 | | 149=x-50 | | 1+|3x-4|=9 | | 5x-3+x+7=-8 | | 13+5x=33x=4 | | 41=11+x | | (x^2-1)^3=27 | | (5x-8)+(7x-4)=180 | | -5x=2=12 | | -20=8x+2(x-5) | | 8/t=12/3 | | 2|x-4|+8=18 | | 5x-30+8-2x=0 | | -1/2w=-14.8 | | 6y^2=42y-72 | | 3-2(x+1)=-13 | | 2=0n+4-2n | | -24−7y=4 | | -4(2a+5a)=-14 | | x-11/6=5 |