V=(13-2x)(23-2x)

Simple and best practice solution for V=(13-2x)(23-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V=(13-2x)(23-2x) equation:



=(13-2V)(23-2V)
We move all terms to the left:
-((13-2V)(23-2V))=0
We add all the numbers together, and all the variables
-((-2V+13)(-2V+23))=0
We multiply parentheses ..
-((+4V^2-46V-26V+299))=0
We calculate terms in parentheses: -((+4V^2-46V-26V+299)), so:
(+4V^2-46V-26V+299)
We get rid of parentheses
4V^2-46V-26V+299
We add all the numbers together, and all the variables
4V^2-72V+299
Back to the equation:
-(4V^2-72V+299)
We get rid of parentheses
-4V^2+72V-299=0
a = -4; b = 72; c = -299;
Δ = b2-4ac
Δ = 722-4·(-4)·(-299)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-20}{2*-4}=\frac{-92}{-8} =11+1/2 $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+20}{2*-4}=\frac{-52}{-8} =6+1/2 $

See similar equations:

| 1190+x=180 | | 3x-5+1=7x-27 | | 12x-25+(x-3)=180 | | 3+1.25c=5.05 | | 3x-5+1x=7x-27 | | p+37+p+7+2p=180 | | 20d-6=9+d+20d | | 13x/4=31 | | 9x+6=9x-8 | | 1+28=1+28x | | 20+8v+7v=5v-20 | | 21-7k=49 | | 108x-108=18(6x-6) | | 5(g-3)=11 | | 39x+38=39x+82 | | 5(x-4)=56 | | 3x+x+4=180 | | 7n-5=55n+5 | | -1=2-f | | 14j=16+12j | | 3x180=x | | P=10-1/10(5(p-2)-10) | | 4r-12=4 | | 2u+3u-8+u+8=180 | | 25−7c=−10 | | -4+9b=-31 | | |-2x+7|=11 | | 3x-11=2x+5x-1 | | 16x-13+97=180 | | 1/2x+x=63 | | 2x-3+5x-3+2x-3=180 | | 7x+3-5x=7x+6 |

Equations solver categories