If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying V(x + 1) + -1v(x + 4) = m Reorder the terms: V(1 + x) + -1v(x + 4) = m (1 * V + x * V) + -1v(x + 4) = m (1V + xV) + -1v(x + 4) = m Reorder the terms: 1V + xV + -1v(4 + x) = m 1V + xV + (4 * -1v + x * -1v) = m 1V + xV + (-4v + -1vx) = m Reorder the terms: 1V + -4v + -1vx + xV = m Solving 1V + -4v + -1vx + xV = m Solving for variable 'V'. Move all terms containing V to the left, all other terms to the right. Add '4v' to each side of the equation. 1V + -4v + -1vx + 4v + xV = m + 4v Reorder the terms: 1V + -4v + 4v + -1vx + xV = m + 4v Combine like terms: -4v + 4v = 0 1V + 0 + -1vx + xV = m + 4v 1V + -1vx + xV = m + 4v Add 'vx' to each side of the equation. 1V + -1vx + vx + xV = m + 4v + vx Combine like terms: -1vx + vx = 0 1V + 0 + xV = m + 4v + vx 1V + xV = m + 4v + vx Reorder the terms: 1V + -1m + -4v + -1vx + xV = m + 4v + vx + -1m + -4v + -1vx Reorder the terms: 1V + -1m + -4v + -1vx + xV = m + -1m + 4v + -4v + vx + -1vx Combine like terms: m + -1m = 0 1V + -1m + -4v + -1vx + xV = 0 + 4v + -4v + vx + -1vx 1V + -1m + -4v + -1vx + xV = 4v + -4v + vx + -1vx Combine like terms: 4v + -4v = 0 1V + -1m + -4v + -1vx + xV = 0 + vx + -1vx 1V + -1m + -4v + -1vx + xV = vx + -1vx Combine like terms: vx + -1vx = 0 1V + -1m + -4v + -1vx + xV = 0 The solution to this equation could not be determined.
| 6(x-2)=-4(x+6) | | 36*85= | | 8x-7y=-3 | | 2x^2+4x-30=-14 | | (6x+1)(x-6)=-71x-60 | | 14(x+2)-2X=3(4X+4)-14 | | 6v-10=-2 | | -3(3x+3)=-9x-9 | | 5c+3=2c+24 | | 24u^5v^7-20uv^2y^3=0 | | x^2+10x-199=0 | | f(x)=2x-x^2-3 | | ln(y)=6t+7 | | (5x-5)(x-1)=60x-185 | | 5(x-1)+16(2x+3)=3(2x-7)-3 | | 5y-8x=-22 | | 10x^5+39x^4+6x^3-121x^2-108x+12=0 | | 3[x-7]-2=7 | | .18(y-7)+.04y=0.12y-0.7 | | 45-11x=-43 | | 2.3x-1.2=1.8x+0.3 | | -4x+7-2x=3(-2x+4)-5 | | 32=910k | | .18(y-7)+.04=.12y-.7 | | 2(2a+12b)=-30c | | -71-3x=137+10x | | (2x+1)(2x+1)=4(x^2+x+1) | | -(m+8n-13)= | | 14+3(x+2)=3-2(x+9) | | 6k+7k=7 | | -28/-2-4=10 | | 5w+4=2w+13 |