V(x)=(30-2x)(30-2x)

Simple and best practice solution for V(x)=(30-2x)(30-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V(x)=(30-2x)(30-2x) equation:



(V)=(30-2V)(30-2V)
We move all terms to the left:
(V)-((30-2V)(30-2V))=0
We add all the numbers together, and all the variables
V-((-2V+30)(-2V+30))=0
We multiply parentheses ..
-((+4V^2-60V-60V+900))+V=0
We calculate terms in parentheses: -((+4V^2-60V-60V+900)), so:
(+4V^2-60V-60V+900)
We get rid of parentheses
4V^2-60V-60V+900
We add all the numbers together, and all the variables
4V^2-120V+900
Back to the equation:
-(4V^2-120V+900)
We add all the numbers together, and all the variables
V-(4V^2-120V+900)=0
We get rid of parentheses
-4V^2+V+120V-900=0
We add all the numbers together, and all the variables
-4V^2+121V-900=0
a = -4; b = 121; c = -900;
Δ = b2-4ac
Δ = 1212-4·(-4)·(-900)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(121)-\sqrt{241}}{2*-4}=\frac{-121-\sqrt{241}}{-8} $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(121)+\sqrt{241}}{2*-4}=\frac{-121+\sqrt{241}}{-8} $

See similar equations:

| 9-v=-4v-10-2 | | 2/9-6h=-11/8 | | 90+68+3x+1=360 | | -3f−8=8+f | | -n+10=-3n-8 | | -2=-6x+5x-10 | | 4v+32-20=v+15 | | 4x+34=89x | | 16=5x+-24 | | 1/20=7/x | | 4(x+1)^2=36 | | X-1.1x=25000 | | x2=6x−5=0 | | x2=6x−5 | | 6b+9-26=21 | | 5=6x+12 | | 9p-4=-4-5p | | -8d=-10d-8 | | -4a=2a-6 | | 9x^2–8=-34x | | X(2x)^2=1.7 | | -4=2a-6 | | 11=11a | | 2x^2+4=x^2+12 | | 5u−8=2+10u | | 128^2x=8 | | -3g=-4g-3 | | 19/36=2x+1/4x | | 4n̤̈+3=5/7 | | -3g=-14g-3 | | 10b=9b-10 | | 9b−10=10b |

Equations solver categories