If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(V)=(20-2V)(20-2V)
We move all terms to the left:
(V)-((20-2V)(20-2V))=0
We add all the numbers together, and all the variables
V-((-2V+20)(-2V+20))=0
We multiply parentheses ..
-((+4V^2-40V-40V+400))+V=0
We calculate terms in parentheses: -((+4V^2-40V-40V+400)), so:We add all the numbers together, and all the variables
(+4V^2-40V-40V+400)
We get rid of parentheses
4V^2-40V-40V+400
We add all the numbers together, and all the variables
4V^2-80V+400
Back to the equation:
-(4V^2-80V+400)
V-(4V^2-80V+400)=0
We get rid of parentheses
-4V^2+V+80V-400=0
We add all the numbers together, and all the variables
-4V^2+81V-400=0
a = -4; b = 81; c = -400;
Δ = b2-4ac
Δ = 812-4·(-4)·(-400)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-\sqrt{161}}{2*-4}=\frac{-81-\sqrt{161}}{-8} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+\sqrt{161}}{2*-4}=\frac{-81+\sqrt{161}}{-8} $
| 355+X+80+2x=2425 | | (b+6)/2=8 | | 0.08w=$0.06 | | -24-(-42)=x/12 | | 216^(3x)=1296^(2x+4) | | -3-4y=2y+7-4y | | x=3(x=4)=20 | | 0.75x-15=36 | | 5x+20=10x+16 | | 120+(2x)=180 | | 3/4x-15=36 | | 11x-6x+18=4x+8 | | 9125p=730 | | (25x)2+7=32 | | 30-x=61 | | 6(y-1)=8+32 | | 4.1x-10.2=22.6 | | 16+34+34=w | | 4x-13=3x-11 | | 10y=3+11y | | 11x-6x-18=4x+8 | | 13/8*t=10.5 | | 13/8*t=101/2 | | 2x+4+x=x+8 | | 13/8t=101/2 | | 28x2+28=52 | | 32+7w-14=-4 | | 5x/4=82 | | x+2x-x+7+4x=x+2 | | 42=6x+12 | | (2x+4)+(x+20)=180 | | 2x+4=(3x+5)*1.4 |