V(x)=(17-2x)(11-2x)

Simple and best practice solution for V(x)=(17-2x)(11-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V(x)=(17-2x)(11-2x) equation:



(V)=(17-2V)(11-2V)
We move all terms to the left:
(V)-((17-2V)(11-2V))=0
We add all the numbers together, and all the variables
V-((-2V+17)(-2V+11))=0
We multiply parentheses ..
-((+4V^2-22V-34V+187))+V=0
We calculate terms in parentheses: -((+4V^2-22V-34V+187)), so:
(+4V^2-22V-34V+187)
We get rid of parentheses
4V^2-22V-34V+187
We add all the numbers together, and all the variables
4V^2-56V+187
Back to the equation:
-(4V^2-56V+187)
We add all the numbers together, and all the variables
V-(4V^2-56V+187)=0
We get rid of parentheses
-4V^2+V+56V-187=0
We add all the numbers together, and all the variables
-4V^2+57V-187=0
a = -4; b = 57; c = -187;
Δ = b2-4ac
Δ = 572-4·(-4)·(-187)
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-\sqrt{257}}{2*-4}=\frac{-57-\sqrt{257}}{-8} $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+\sqrt{257}}{2*-4}=\frac{-57+\sqrt{257}}{-8} $

See similar equations:

| 12p-5=31 | | X+5y=112 | | 9^(2x-3)=27 | | 5x-7=8x-55=180 | | z/7-7=16 | | X+15-(14*a)=150 | | x^2+2√2x+1=0 | | 3^(x-10)=27 | | 7+j=-2 | | 2-3i/5+2i=0 | | (2^x-2x)/2^x=0.95 | | 2w/16=40/80 | | -1-x+x^2=0 | | 6-4+10x=2x+2(3x+4) | | y/4+7/3=-8/3 | | 3^4x-24=1/81 | | x–15=–12 | | 1/12(x-26)=7+x | | 3(7x+4)=54 | | 9(x/25)=8 | | 8y+6=5y-5 | | 6x-6=-3+5x | | V=4-2.5t | | 7x+9-4x=0 | | 27x+2=3-2x-4 | | 7x+12x=-48+x | | t3−6t2−36t−40=0 | | xx3+8=23 | | 9x²+5=86 | | ×+3x=60 | | F’(x)=3x+1 | | (4x+32)+(2x+34)=90 |

Equations solver categories