V(a)=(8-2a)(6-2a)

Simple and best practice solution for V(a)=(8-2a)(6-2a) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V(a)=(8-2a)(6-2a) equation:



(V)=(8-2V)(6-2V)
We move all terms to the left:
(V)-((8-2V)(6-2V))=0
We add all the numbers together, and all the variables
V-((-2V+8)(-2V+6))=0
We multiply parentheses ..
-((+4V^2-12V-16V+48))+V=0
We calculate terms in parentheses: -((+4V^2-12V-16V+48)), so:
(+4V^2-12V-16V+48)
We get rid of parentheses
4V^2-12V-16V+48
We add all the numbers together, and all the variables
4V^2-28V+48
Back to the equation:
-(4V^2-28V+48)
We add all the numbers together, and all the variables
V-(4V^2-28V+48)=0
We get rid of parentheses
-4V^2+V+28V-48=0
We add all the numbers together, and all the variables
-4V^2+29V-48=0
a = -4; b = 29; c = -48;
Δ = b2-4ac
Δ = 292-4·(-4)·(-48)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{73}}{2*-4}=\frac{-29-\sqrt{73}}{-8} $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{73}}{2*-4}=\frac{-29+\sqrt{73}}{-8} $

See similar equations:

| 3(7-2x)=5x-1 | | -5p+10=20 | | 5+x=3x+7-4x | | 6(-3v+1)=-10-10v | | (m–4)(m–2)=80 | | 9x–6x–2=–23 | | 28=2w+2 | | 6k=5k+8 | | 27=2x-5(x-9) | | 4f+3+2f=5+6f | | 6d-1+d=26-2d | | 13^y=1 | | k-9/3=13 | | 15–(2x+7)=14 | | 60x+140=1570 | | -18=12+5n | | 3(2x–1)+5=14 | | 7-3/4x=-5 | | 11=5/x-6 | | x/5=3/10x+7 | | 9(x—4)=3(x+12) | | x/3.5-1.2=4.3 | | x/5=3/10(x)+7 | | 3x(2x-(x-(5x+6)))=x-2 | | 5(x+7)=6(x–5) | | 80+10x=20 | | 13x+14–17x+12=106–8x | | 6x²-19x+8=0 | | 14-p=1/3p-1 | | 3/2x-9=-12 | | 3(x+9)^2=5 | | 5.3-2.5x=4.8 |

Equations solver categories