If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3)=(10-2V)(10-2V)
We move all terms to the left:
(3)-((10-2V)(10-2V))=0
We add all the numbers together, and all the variables
-((-2V+10)(-2V+10))+3=0
We multiply parentheses ..
-((+4V^2-20V-20V+100))+3=0
We calculate terms in parentheses: -((+4V^2-20V-20V+100)), so:We get rid of parentheses
(+4V^2-20V-20V+100)
We get rid of parentheses
4V^2-20V-20V+100
We add all the numbers together, and all the variables
4V^2-40V+100
Back to the equation:
-(4V^2-40V+100)
-4V^2+40V-100+3=0
We add all the numbers together, and all the variables
-4V^2+40V-97=0
a = -4; b = 40; c = -97;
Δ = b2-4ac
Δ = 402-4·(-4)·(-97)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{3}}{2*-4}=\frac{-40-4\sqrt{3}}{-8} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{3}}{2*-4}=\frac{-40+4\sqrt{3}}{-8} $
| -13+y=-10 | | u/4-(-13)=18 | | 20c-13c+3c+4c-8c+2=20 | | 4-3x+2x=51 | | c-8/2=1 | | 5(x-4)-3x+6=2(x-8) | | 20=2(m+4) | | 5(h+38)=(-15) | | 3.6=x/9.5 | | 3(n-67)=99 | | 2x-8+11=21 | | 300x=57000 | | 15x+167=180 | | 9g-(-19)=46 | | 5(j+2)=65 | | 6x+16+7x+7=90 | | 4n/5=6 | | 14x=28910 | | f/5+(-37)=(-28) | | a=2(3.14)10+2(3.14)(10)(5) | | 4x+10=-5x+16 | | 2k-8=(-2) | | 10=1-2x | | 8=2s-4 | | 1/2=20x+1 | | -12=u/(-3)+(-16) | | 7x-18+3x+6=45 | | t/3+(-4)=(-2) | | m/2-(-6)=7 | | 4v-(-7)=15 | | 36x=-54 | | X+69+129+x=90 |