If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(T)=7(T/2)+18T^2
We move all terms to the left:
(T)-(7(T/2)+18T^2)=0
Domain of the equation: 2)+18T^2)!=0We add all the numbers together, and all the variables
T!=0/1
T!=0
T∈R
-(7(+T/2)+18T^2)+T=0
We multiply all the terms by the denominator
-(7(+T+T*2)+18T^2)=0
We calculate terms in parentheses: -(7(+T+T*2)+18T^2), so:We get rid of parentheses
7(+T+T*2)+18T^2
determiningTheFunctionDomain 18T^2+7(+T+T*2)
We multiply parentheses
18T^2+7T+14T
We add all the numbers together, and all the variables
18T^2+21T
Back to the equation:
-(18T^2+21T)
-18T^2-21T=0
a = -18; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·(-18)·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*-18}=\frac{0}{-36} =0 $$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*-18}=\frac{42}{-36} =-1+1/6 $
| n3+10n2=O(n3) | | (-x^2+10x+36)/2=0 | | 2x+9+3x=4x-2 | | 39=-13z | | 2x-17=11-2x | | -2x–6=-3x+14 | | 2x²+4x-31=0 | | 4m+6=21;3 | | 7(2x-50)-4x=519-x | | 1.2x2.6=3.12 | | 3x(x-4)=24(x+15)=79 | | x-17=277-2x | | 10k-37=3k+33 | | 12=0.24•x | | g(×)=(×^2+1)(×^3-1) | | 4x+8|5=4 | | 90+57+(4x+1)=180 | | -9(3-6d)=9(2d-2) | | )5.x+12=62 | | 65=¾c-7 | | (3x-8)=(x+26) | | q+52=58 | | 34(x-3)=4 | | 5(2×-3)=3(2x) | | -7x=-19x | | (9x-2)=133 | | 8-(n-+5)=96 | | )4.x+20=100 | | (4x)+(x+18)+122=180 | | -20-7q=20-5q | | 7(1+2r=119 | | 1/6(x+5)+3x=1/5x+2 |