P=(30+10n)(100-20n)

Simple and best practice solution for P=(30+10n)(100-20n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=(30+10n)(100-20n) equation:



=(30+10P)(100-20P)
We move all terms to the left:
-((30+10P)(100-20P))=0
We add all the numbers together, and all the variables
-((10P+30)(-20P+100))=0
We multiply parentheses ..
-((-200P^2+1000P-600P+3000))=0
We calculate terms in parentheses: -((-200P^2+1000P-600P+3000)), so:
(-200P^2+1000P-600P+3000)
We get rid of parentheses
-200P^2+1000P-600P+3000
We add all the numbers together, and all the variables
-200P^2+400P+3000
Back to the equation:
-(-200P^2+400P+3000)
We get rid of parentheses
200P^2-400P-3000=0
a = 200; b = -400; c = -3000;
Δ = b2-4ac
Δ = -4002-4·200·(-3000)
Δ = 2560000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2560000}=1600$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-1600}{2*200}=\frac{-1200}{400} =-3 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+1600}{2*200}=\frac{2000}{400} =5 $

See similar equations:

| 9x-22+61+5x-7+34=360 | | -2x+4=-6-17 | | 2.50=3x+13 | | 4t-28=-2t | | 8-4x=14x-28 | | 1209=9y+84 | | x*3x=75 | | 208=5y-17 | | 25z=60 | | 5x-10-7x=32 | | a12=3223 | | 2/x+5=10 | | 15•u+18=18 | | -12=13x+9x | | 48d=12 | | 30-5(2x+3)=20 | | r-11912=7014 | | 0.75=75x0.07 | | 36s=18 | | 4/7z=15 | | (3s-3)=(s+5) | | 6=3(x-6) | | 9x-16=16+5x= | | 5w-9=2w | | 321+3y=420 | | -72=-81-9x | | 6x+7x-20=40-7x | | 458x=2414 | | 5x-13=-13+17x | | 4(x-0.5)+10.5=2(x=11.5)-2.5 | | -3-4y=14 | | 2(3–h)—6=—5h |

Equations solver categories