P=(22+x)(154-6x)

Simple and best practice solution for P=(22+x)(154-6x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=(22+x)(154-6x) equation:



=(22+P)(154-6P)
We move all terms to the left:
-((22+P)(154-6P))=0
We add all the numbers together, and all the variables
-((P+22)(-6P+154))=0
We multiply parentheses ..
-((-6P^2+154P-132P+3388))=0
We calculate terms in parentheses: -((-6P^2+154P-132P+3388)), so:
(-6P^2+154P-132P+3388)
We get rid of parentheses
-6P^2+154P-132P+3388
We add all the numbers together, and all the variables
-6P^2+22P+3388
Back to the equation:
-(-6P^2+22P+3388)
We get rid of parentheses
6P^2-22P-3388=0
a = 6; b = -22; c = -3388;
Δ = b2-4ac
Δ = -222-4·6·(-3388)
Δ = 81796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81796}=286$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-286}{2*6}=\frac{-264}{12} =-22 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+286}{2*6}=\frac{308}{12} =25+2/3 $

See similar equations:

| 3.25=w+0.25 | | 19c+9=11c+17 | | 2(6.2)+y=9 | | y/3-5=22 | | f(4)=3(4)+-4 | | (x/2)^2=0 | | -6+2/5x=4 | | 2(x-2+3=2x-1 | | 3x(18.50+104.50)=2 | | (4-(x/2)^2)+x^2=0 | | B=8t | | (4-(x/2)^2+x^2=0 | | 2(q-11)=-12 | | F(x)=20x+350 | | 3x-4(2x-5)=20-5x | | -8(8-2k)=-4K+8(2k-5) | | -10b-19+9b=20 | | 161/2a=3/4 | | 2a+44=180 | | -x=-1/6 | | 45-5k+1=1 | | x^2-64/25=0 | | 4/p=8 | | -7-3a=-7-3a | | -4y-6-13y=11 | | 19=5n+7-3n= | | 16u+4=-12 | | 12x+1=95 | | 20=-4*f+6+14 | | 6x-2=-2+6x | | 6^n=7776 | | 119=-7x |

Equations solver categories