P(t)=-2(t+3)(t+5)

Simple and best practice solution for P(t)=-2(t+3)(t+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(t)=-2(t+3)(t+5) equation:



(P)=-2(P+3)(P+5)
We move all terms to the left:
(P)-(-2(P+3)(P+5))=0
We multiply parentheses ..
-(-2(+P^2+5P+3P+15))+P=0
We calculate terms in parentheses: -(-2(+P^2+5P+3P+15)), so:
-2(+P^2+5P+3P+15)
We multiply parentheses
-2P^2-10P-6P-30
We add all the numbers together, and all the variables
-2P^2-16P-30
Back to the equation:
-(-2P^2-16P-30)
We get rid of parentheses
2P^2+16P+P+30=0
We add all the numbers together, and all the variables
2P^2+17P+30=0
a = 2; b = 17; c = +30;
Δ = b2-4ac
Δ = 172-4·2·30
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-7}{2*2}=\frac{-24}{4} =-6 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+7}{2*2}=\frac{-10}{4} =-2+1/2 $

See similar equations:

| d+33=38 | | 4x+((7x+2)=90 | | x+7,75=-0,74 | | 6(8-7k)=18 | | 250=0.4m+20 | | 42+c=65 | | 7(9b-3)=-31 | | 67=a+35 | | 8c+2c=-35 | | F(x)=3x+4/2x^2+2 | | 2x+8=12.5 | | 1.69x^2-1.56x+12.36=0 | | 8h+25=30-10h | | x-3,8=-7 | | -17=-2(4n+8) | | -28=5+2(z+6) | | 4x-2x=8x+20 | | 17=-4h+5h | | 5b^-25=0 | | 61/x=51/6 | | 120x/(x^2+3)^2=0 | | -3(2r+8)=-27 | | 2(x5)=16 | | -3y+6y=-12 | | 125=37.5+5(5h/2) | | -6(9+8v)=33 | | -26=6+4(a-3) | | 3(5z-7)=2(9z-11) | | 25x^2+70x+46=0 | | 7x-8-5x=32 | | 4/2X400/2-800/2=360–(4x | | 18x=8-12-6+7 |

Equations solver categories