If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+N2=42
We move all terms to the left:
+N2-(42)=0
We add all the numbers together, and all the variables
N^2-42=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $
| -17y+12=19-18y | | 10+y/0=1 | | p-1-4p=17 | | -4(9u-3)+10u=-12u-14u+12 | | 20d-10=12d+18d-20 | | 8y-5y-8=36.55 | | 2/3w+3/4=-7/12 | | 28+8x=4+10x | | 3h-5=-5+6h-2h | | q–3+ –5=–4 | | q/–3+–5=–4 | | 17y+42-10y=7 | | 48=8h−89 | | 19b+3+17b=9(4b+4) | | -5-9y=-7y+9 | | 7x–10=4x+8 | | 28+8x=4x+10 | | 3(q-2)+2=5q | | 28+8x=4+10 | | 2x=x6x | | 5x^2+13x=-27 | | 540*3+4=n+60 | | |10-2k|=2 | | -8n=-7n-7 | | 22x-24-14x=-8 | | -13+6(2k-14)=13+12k | | -8+5-6q=4-7q | | 5t+36+2t=-6 | | 48=8(h−89) | | -8n-20-19=-17n+15 | | 12+3q=96 | | 3-2x²=7 |