N+n2=132

Simple and best practice solution for N+n2=132 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for N+n2=132 equation:



+N2=132
We move all terms to the left:
+N2-(132)=0
We add all the numbers together, and all the variables
N^2-132=0
a = 1; b = 0; c = -132;
Δ = b2-4ac
Δ = 02-4·1·(-132)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{33}}{2*1}=\frac{0-4\sqrt{33}}{2} =-\frac{4\sqrt{33}}{2} =-2\sqrt{33} $
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{33}}{2*1}=\frac{0+4\sqrt{33}}{2} =\frac{4\sqrt{33}}{2} =2\sqrt{33} $

See similar equations:

| 9h+8=71h= | | 10m+10=100m= | | 3m+10=25m= | | 6m+7=49m= | | 7x÷2-(4x-5)=x÷2+x÷4 | | O.6x=34-0.4x+14 | | 5(X+4)=3x+8) | | 26=7(g-9+12 | | 69=6y | | 7+5x+3=22 | | 70=7x+ | | 4x-10=8x-2x | | 0.4(3x-2)=0.5x+1 | | 6x(2x+3x)=0 | | 3t-3=19 | | (1–2x)(1–3x)=(6x–1)x–1 | | -6x-2(0)=2 | | 4(2x–2)+2(1-x)=9+x | | 6(1–3x)–2(2x–1)=-18x | | 60*t=40*t+0.50*2.5*t^2 | | -(1+7x)–6(-7–x)=36 | | -3(x+1)+7x=4(x=1)-7 | | x–x/2–1=244 | | 0=2w^2+4w-70 | | x+x+1=111 | | 7g+3g=30 | | 6x+20=7x+3 | | -2.9-x=-7.4 | | 0.4y-3/1.5+9=-7/5 | | 5y-7-5y=6y-5y | | 8x^-1/3=2 | | X+0.4x=840000 |

Equations solver categories