N(n+1)(n-1)=990

Simple and best practice solution for N(n+1)(n-1)=990 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for N(n+1)(n-1)=990 equation:



(N+1)(N-1)=990
We move all terms to the left:
(N+1)(N-1)-(990)=0
We use the square of the difference formula
N^2-1-990=0
We add all the numbers together, and all the variables
N^2-991=0
a = 1; b = 0; c = -991;
Δ = b2-4ac
Δ = 02-4·1·(-991)
Δ = 3964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3964}=\sqrt{4*991}=\sqrt{4}*\sqrt{991}=2\sqrt{991}$
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{991}}{2*1}=\frac{0-2\sqrt{991}}{2} =-\frac{2\sqrt{991}}{2} =-\sqrt{991} $
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{991}}{2*1}=\frac{0+2\sqrt{991}}{2} =\frac{2\sqrt{991}}{2} =\sqrt{991} $

See similar equations:

| 4z=6(z-2) | | 49=7(z-3) | | 42=1/2(3x+15)(x+2) | | x/4=15/10 | | 4x/(x-7)=7/8 | | x/15=8/10 | | -7.9m=11.5 | | (5y+11=12y-10) | | (-x^2+7x-10)=0 | | 12x+7+-6x-32=0 | | 10x=9x+90 | | 15(5c-1)-16=73c+15 | | 122°=x | | 43=4x-135 | | 21-x/3=x-6 | | 43=4x-136 | | 8(w-2)=-9w-33 | | -2x-12=-4(x+8) | | -6x+2=12x-15 | | -3(w+5)=9w+45 | | -3(w=5)=9w=45 | | (7x+120)=180 | | -1=3(v-7)-5v | | 7.5=4.2x-3 | | (2x-4)+(4x-10)=9x-9 | | 1.4p+p=48 | | 8.96=v/7 | | 5-3x=3-(2x-4) | | -2/3x-5/3=4x-3/4 | | 7(u-2)-2=-7(-4u+1)-9u | | -4(4x-7)+6x=4(x+8) | | -15+6a+6+4=4a-1 |

Equations solver categories