M(x)=(2x-6)(x-4)

Simple and best practice solution for M(x)=(2x-6)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for M(x)=(2x-6)(x-4) equation:



(M)=(2M-6)(M-4)
We move all terms to the left:
(M)-((2M-6)(M-4))=0
We multiply parentheses ..
-((+2M^2-8M-6M+24))+M=0
We calculate terms in parentheses: -((+2M^2-8M-6M+24)), so:
(+2M^2-8M-6M+24)
We get rid of parentheses
2M^2-8M-6M+24
We add all the numbers together, and all the variables
2M^2-14M+24
Back to the equation:
-(2M^2-14M+24)
We add all the numbers together, and all the variables
M-(2M^2-14M+24)=0
We get rid of parentheses
-2M^2+M+14M-24=0
We add all the numbers together, and all the variables
-2M^2+15M-24=0
a = -2; b = 15; c = -24;
Δ = b2-4ac
Δ = 152-4·(-2)·(-24)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{33}}{2*-2}=\frac{-15-\sqrt{33}}{-4} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{33}}{2*-2}=\frac{-15+\sqrt{33}}{-4} $

See similar equations:

| 4x3=2x+7 | | 3x=1.2^x | | 13+2y=5y+1 | | 2/5(15c+10)=12c-9 | | 3=g| | | 6+3x=40 | | 10v^2-13v-30=0 | | 7x/9-5x/9=6 | | 125+15d=50 | | 8+u=3u | | x/(x+8)=0.6 | | 6(4d-7=) | | 15x-8=22+20x | | P(x)=-0.004x^2+2.4x-400 | | (x+10)(x+5)=300 | | -5x²+60x=0 | | 35a+43=180 | | 25.84=13.9+x | | V/14=e/7 | | -4.2-8.3=-3.7(x+3) | | 15x+17+4+9x=1 | | 5/j=24 | | 9/2=22j | | 3x/16=9/8 | | 5^3x=1400 | | 82+2x=10 | | 152.05=-5.8-7.7(1-5a) | | 147.14=-5.1(7-6n)-4.48n | | 6x^2+3x^2=40 | | 20+12x=80 | | 5.7(-3x+4.7)=102.03 | | -1/4p-p=25/16 |

Equations solver categories