If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(M+7)2M-1=0
We multiply parentheses
2M^2+14M-1=0
a = 2; b = 14; c = -1;
Δ = b2-4ac
Δ = 142-4·2·(-1)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{51}}{2*2}=\frac{-14-2\sqrt{51}}{4} $$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{51}}{2*2}=\frac{-14+2\sqrt{51}}{4} $
| 8n/5=1/5=7/5 | | 3*12-3/2=x | | X+3+3x=x+5 | | -12.25(-10.12)=x | | χ²-3x=χ²+5x-2 | | 10h-7=9h-13 | | 6=36/b+2 | | 36x^2-7x-4=0 | | (2x-7)/2=24.5 | | -1+7(x-5)=14x+2-7x | | -6x^2+24x+16=0 | | 12+9k=93 | | 15/40=x/25 | | 2x+14=26+x-2 | | 1/4+x=11/12 | | 7c+14=-5c+4+9c | | 7b-4b=48 | | m+5=23.4 | | 4(y+2)-6y=6y | | -28x=224 | | m=5=23.4 | | 104/q=13 | | z-8=37 | | 3.4=x-9.1 | | 9m-3=4m | | b-2b=-1 | | x÷12=8 | | a=2-1 | | (x+2)^2+x^2=5 | | 13u+10=10u+22 | | 4y+22=15y | | 6+3m=-15 |