Ln(780/x)=(40700/4.184)((1/342)-(1/373))

Simple and best practice solution for Ln(780/x)=(40700/4.184)((1/342)-(1/373)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Ln(780/x)=(40700/4.184)((1/342)-(1/373)) equation:


D( x )

x = 0

780/x <= 0

x = 0

x = 0

780/x <= 0

780/x <= 0

780*x^-1 <= 0

780*x^-1 <= 0 // : 780

x^-1 <= 0/780

x^-1 <= 0

1/(x^1) <= 0

x <> 0

1/(x^1) <= 0 // * x^2

(x^2)/(x^1) <= 0

x^1 <= 0

x <= 0

x in (-oo:0)

x in (0:+oo)

ln(780/x) = (40700/4.184)*(1/342-(1/373)) // - (40700/4.184)*(1/342-(1/373))

ln(780/x)-((40700/4.184)*(1/342-(1/373))) = 0

ln(780/x)-9727.5334608*(1/342-1/373) = 0

ln(780/x)-2.363887906309008 = 0 // + 2.363887906309008

ln(780/x) = 2.363887906309008

ln(780/x) = ln(e^2.363887906309008)

780/x = e^2.363887906309008

780/x-e^2.363887906309008 = 0

780*x^-1 = e^2.363887906309008 // : 780

x^-1 = (e^2.363887906309008)/780

-1 < 0

1/(x^1) = (e^2.363887906309008)/780 // * x^1

1 = ((e^2.363887906309008)/780)*x^1 // : (e^2.363887906309008)/780

780*e^-2.363887906309008 = x^1

x = 780*e^-2.363887906309008

x = 780*e^-2.363887906309008

See similar equations:

| 1y+(-2+5)=5 | | 3x-4/5=0 | | 4-(3p+7)=5-p | | 62x=5x | | K/3=54 | | 150x+250x(40-x)=8400 | | 3y-4=6-8y | | 10x(x+1)=x(12x+1) | | 4/5*x-5/6*y-11/20*x-8/15 | | ln(x)+ln(x+3)=ln(28) | | 7h+3+9h=259 | | X-5-5x=11 | | 2m^2-14m=-23 | | -(3x)/(8)=-(15)/(32) | | y=4.9t^2+49t | | B^8=40 | | 3[x-3]=30 | | y=ln(sin^4x) | | 1/3h=1 | | A(7)=615.75 | | -5y-3=-8-3y | | 1.6q-8.3q+1.2=-25.6 | | -1/5=x=2/5 | | O(10)=2(10)-1 | | 9x^4-25y^2=0 | | 6-7(4m-5)=-99 | | 2x+39+6x-9=180 | | 5-(-2x+3)=-1(1-x) | | 0.16x=15.00+0.12x | | 2x-4(-5x+2)= | | -6x^4-54x=0 | | (4x-5)+55=180 |

Equations solver categories