If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(J)=144-J2
We move all terms to the left:
(J)-(144-J2)=0
We add all the numbers together, and all the variables
-(-1J^2+144)+J=0
We get rid of parentheses
1J^2+J-144=0
We add all the numbers together, and all the variables
J^2+J-144=0
a = 1; b = 1; c = -144;
Δ = b2-4ac
Δ = 12-4·1·(-144)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{577}}{2*1}=\frac{-1-\sqrt{577}}{2} $$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{577}}{2*1}=\frac{-1+\sqrt{577}}{2} $
| B(x)=x2+6x-40 | | 5.6n=43.68 | | 5^(x+1)=138 | | 25x+13x=4x-13 | | 3x(2)+80=8x(2) | | x^2-8x-33=O | | 2x+22=1+x | | m/2m=3 | | 0.75(9x+4)=0.25(27x+8) | | 2/3(12x+9)=1/6(12x+144) | | 0.4(2x-0.6)=0.8(x-0.3) | | 0.1(5x+6)=0.25(2x-2) | | 3=5+31t-16t^2 | | 3(x+4)-6=2x-18 | | (8s)+(6s-8)+90=180 | | 91+91+(8t-7)+(8t-7)=360 | | 91+(8t-7)=360 | | (6t+6)=(7t-7) | | (6t+6)=(7t-7 | | (7t+1)=(8t-8) | | (2a+3)=(6a+1) | | (8z-3)=(7z+7) | | (1/3)^x-5=81^x | | 1/2(x+2=1/4(3x-1) | | (n+1)^2-3=36 | | X+(x-6.000)=42.000 | | 1/2(x+2)=1/4(3x-1) | | 1/9^x=3^-x/3*81x | | 3*9^1+y=27-y | | x2-27x+182=0 | | x=-0.2x+1.9 | | 6y^2-10y+6=0 |