IN(15k+2)=2in(k)+in(8)

Simple and best practice solution for IN(15k+2)=2in(k)+in(8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for IN(15k+2)=2in(k)+in(8) equation:


Simplifying
IN(15k + 2) = 2in(k) + in(8)

Reorder the terms:
IN(2 + 15k) = 2in(k) + in(8)
(2 * IN + 15k * IN) = 2in(k) + in(8)
(2IN + 15kIN) = 2in(k) + in(8)

Multiply in * k
2IN + 15kIN = 2ikn + in(8)

Reorder the terms for easier multiplication:
2IN + 15kIN = 2ikn + 8in

Solving
2IN + 15kIN = 2ikn + 8in

Solving for variable 'I'.

Move all terms containing I to the left, all other terms to the right.

Reorder the terms:
2IN + -2ikn + -8in + 15kIN = 2ikn + 8in + -2ikn + -8in

Reorder the terms:
2IN + -2ikn + -8in + 15kIN = 2ikn + -2ikn + 8in + -8in

Combine like terms: 2ikn + -2ikn = 0
2IN + -2ikn + -8in + 15kIN = 0 + 8in + -8in
2IN + -2ikn + -8in + 15kIN = 8in + -8in

Combine like terms: 8in + -8in = 0
2IN + -2ikn + -8in + 15kIN = 0

The solution to this equation could not be determined.

See similar equations:

| 8(h+5)+3h= | | x^2-15+2x-x*(x+3)=8 | | 6+5(3w+4)= | | 50=(x-2)+[8+(3x-4)] | | 9.99x+15=y | | 7ln(3x)=12 | | 6x^2+8x^7= | | exa=1260 | | (-2a^2b^6)(7ab^3)= | | 2(4x^7)+2(3x^2)= | | -18x+10=7 | | 10xy^0= | | 15+9.99x=y | | x^4-4x^2+y^2-4xy+16=0 | | -3x^5(x^3+6x)+7x^8= | | 23-x=9 | | lg(2x-7)=0 | | log^3(2x-9)=1 | | x-0.8=(x+5)-2(x-1) | | 2r-26=26+7r | | -12x^2+28x-8=0 | | (3x-9)(-9x^4)= | | Log[2](3x+6)=1 | | 15x+25(x-2)=310 | | 4(6x-4)-7(x-2)= | | 7s-18=-22+3s | | h(t)=-16t^2+76t+8 | | 18*x=y | | 2(4x+4)+3(x+3)= | | x/4-7=2 | | 9+4(5-3x)=22-2(5x+7) | | 66=-16x^2+66(0) |

Equations solver categories