If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=I(1000-50I)
We move all terms to the left:
-(I(1000-50I))=0
We add all the numbers together, and all the variables
-(I(-50I+1000))=0
We calculate terms in parentheses: -(I(-50I+1000)), so:We get rid of parentheses
I(-50I+1000)
We multiply parentheses
-50I^2+1000I
Back to the equation:
-(-50I^2+1000I)
50I^2-1000I=0
a = 50; b = -1000; c = 0;
Δ = b2-4ac
Δ = -10002-4·50·0
Δ = 1000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$I_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$I_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1000000}=1000$$I_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1000)-1000}{2*50}=\frac{0}{100} =0 $$I_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1000)+1000}{2*50}=\frac{2000}{100} =20 $
| -40+80=-8+8(a=4) | | 14-m=35 | | 447x-40=180 | | 180=x+(3x+48) | | p+3=-26 | | 44(7x-40)=180 | | Y=91/3x=-1/2 | | 7x^2+35-168=0 | | 570=-30n | | 232=-29v | | x+2(3.5)=`15 | | y(5)=2(5)+40 | | 5(x)=2x+40 | | S=-16t^2+24+1 | | -1=8+2x | | 5(y-3)=3(2y+3) | | 180=x+148 | | f=2+40(5)-1 | | H=-16t^2-20t+220 | | 3c—5-4c=15 | | -7+5(3x-4)=-42 | | 3,5x+5=19 | | 26n(n+1=0 | | 2x^2+22x+28=-10x | | 1/7c=3/8 | | 26+2w=w-29 | | -7(8n6)=-406 | | 2473+1286+y=4000 | | x-5=10-12 | | 6x3−31x2+3x+10=0 | | 4-5g=33 | | 4x16+11=180 |