H=-4(t-3)(4t+5)

Simple and best practice solution for H=-4(t-3)(4t+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-4(t-3)(4t+5) equation:



=-4(H-3)(4H+5)
We move all terms to the left:
-(-4(H-3)(4H+5))=0
We multiply parentheses ..
-(-4(+4H^2+5H-12H-15))=0
We calculate terms in parentheses: -(-4(+4H^2+5H-12H-15)), so:
-4(+4H^2+5H-12H-15)
We multiply parentheses
-16H^2-20H+48H+60
We add all the numbers together, and all the variables
-16H^2+28H+60
Back to the equation:
-(-16H^2+28H+60)
We get rid of parentheses
16H^2-28H-60=0
a = 16; b = -28; c = -60;
Δ = b2-4ac
Δ = -282-4·16·(-60)
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4624}=68$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-68}{2*16}=\frac{-40}{32} =-1+1/4 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+68}{2*16}=\frac{96}{32} =3 $

See similar equations:

| 15x+3=10x3 | | -8(x+5)+4x=-28-x | | 0=−5n+2n | | –4h=–5h−5 | | 14-4-7p3=1-8p | | (24-1x)/6=12 | | A+8a=9 | | 9/8=n/4 | | 25t-16-13t=67 | | 14-a=6a-21 | | x/3=27/2 | | 7(d+2)=3(3d+4) | | A-10+a=180 | | 8x+16=6x-6” | | X+202x-13=80 | | Y=-37y+y | | Y=-3.7y+y | | (2/3×9a)+(2/3×6)=23.8 | | 3x+100+5x=180 | | 1(2x-5)=3(-x)-4(5) | | w-9=-19 | | f-18=18 | | (3x-3)+(2x+4)=180 | | -3x+4/5+6/5=-3x/4 | | -2x^2-10x+168=0 | | O.75/n=36 | | 14m+10=52-6m | | 6x−3=2x+9 | | 14+k=30 | | 10n+3=1 | | -2.5(x-10)=-2.5x-25 | | 8(5/6v)=-7-v |

Equations solver categories