H=-16t2+50

Simple and best practice solution for H=-16t2+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t2+50 equation:



=-16H^2+50
We move all terms to the left:
-(-16H^2+50)=0
We get rid of parentheses
16H^2-50=0
a = 16; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·16·(-50)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*16}=\frac{0-40\sqrt{2}}{32} =-\frac{40\sqrt{2}}{32} =-\frac{5\sqrt{2}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*16}=\frac{0+40\sqrt{2}}{32} =\frac{40\sqrt{2}}{32} =\frac{5\sqrt{2}}{4} $

See similar equations:

| 3y+1+72=180 | | -7.5=y+3/2 | | 4x+220=360 | | 7-(2x-3)=2 | | 3n+12=100 | | 3(2x+3)-x=1x-23 | | x+66+x+86+46=180 | | 7w+11=3w+23 | | 2/5y=40 | | 6n+2=100 | | 8n^+24n-320=0 | | 90+47+x+57+x=180 | | 2a^2+4a=-14 | | -1/2a+3a=15/4 | | 17=-5+a/4 | | -4x-6+1x=-12 | | 60+6x=84 | | 19m=31 | | 20+12x=10x+6 | | -3-4x=3-2x-10 | | 5x+100+3x+8=180 | | 5/x-4=8/12 | | 8+8/x=x+10 | | 4b−2=10 | | x/63=7/9 | | 8(k-8)=32-8k | | 5x^+8x+9=0 | | 1.5q=-8.5 | | 155+65+x+45=180 | | -3(1+7p)=-20-4p | | 3x+x+3=8x-4x+3x | | 1.5/12.6x=100 |

Equations solver categories