If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+34H+100
We move all terms to the left:
-(-16H^2+34H+100)=0
We get rid of parentheses
16H^2-34H-100=0
a = 16; b = -34; c = -100;
Δ = b2-4ac
Δ = -342-4·16·(-100)
Δ = 7556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7556}=\sqrt{4*1889}=\sqrt{4}*\sqrt{1889}=2\sqrt{1889}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{1889}}{2*16}=\frac{34-2\sqrt{1889}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{1889}}{2*16}=\frac{34+2\sqrt{1889}}{32} $
| p^2-12p+64=6p-17 | | (4/21)x=(2/7) | | y+4=y/3-8 | | 7+5x=17+3x | | -7b+9=-b-9 | | 23.5=-3.5+7.5b+6 | | 15g-7=37 | | 3x+(8x+12)=180 | | 4/7(21/8×+1/2)=-2(1/7-5/28x | | 3(3x+3)=14x+5-5x+4 | | Y=(x+5)2+1 | | -9-6r=-9r | | 5+7x=3+17x | | 6u+5=5u-5 | | 13.8+y=22.9 | | 10/e=0.14 | | -6p=-7p-10 | | 5x−=3x+9 | | 4(y+3)=y+(-9) | | x=(65x-12)+(43x+10)=180 | | 5x−7=3x+9 | | 16x+5+71=5x | | 10-5t=-4t | | 2(2x+2)=2 | | 5(x-6)+8-2x=x+2(x=11) | | x=(65x-12)+(43x+10) | | (2)=-16t+96t+256 | | -10v+6=-154 | | 32x=-56 | | x-15.8=3.7 | | -5w=-6w-1 | | 4(2x+3)=23 |