H(x)=-5(x+1)(x-9)

Simple and best practice solution for H(x)=-5(x+1)(x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=-5(x+1)(x-9) equation:



(H)=-5(H+1)(H-9)
We move all terms to the left:
(H)-(-5(H+1)(H-9))=0
We multiply parentheses ..
-(-5(+H^2-9H+H-9))+H=0
We calculate terms in parentheses: -(-5(+H^2-9H+H-9)), so:
-5(+H^2-9H+H-9)
We multiply parentheses
-5H^2+45H-5H+45
We add all the numbers together, and all the variables
-5H^2+40H+45
Back to the equation:
-(-5H^2+40H+45)
We get rid of parentheses
5H^2-40H+H-45=0
We add all the numbers together, and all the variables
5H^2-39H-45=0
a = 5; b = -39; c = -45;
Δ = b2-4ac
Δ = -392-4·5·(-45)
Δ = 2421
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2421}=\sqrt{9*269}=\sqrt{9}*\sqrt{269}=3\sqrt{269}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-3\sqrt{269}}{2*5}=\frac{39-3\sqrt{269}}{10} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+3\sqrt{269}}{2*5}=\frac{39+3\sqrt{269}}{10} $

See similar equations:

| n+55=135n= | | 10x-1+7x-8=180 | | 4x+24=2x+29 | | 36b=171+b | | 8x-2=-146 | | 5x25=60 | | h+18=33h= | | 5|x|-10=35 | | x+2/18=8/9+x-5/5 | | 4a=72a= | | 400−2x=244 | | 3k-2=22 | | 3n^2+10n=(-8) | | 2t*3t=0 | | 4m/3-17/21=6m/7-1 | | 3x+10=(x+4)(x+4) | | 2/5w=-4/15 | | x-9=13x | | -6(4w+8)-2w=6(w-4)-6 | | 5X-2y=47 | | 0=(-16x^2)+160x+128 | | 8x-15=-21 | | -3(x+2)(x-2)=0 | | 2n-35=77+6n | | -45=6(x+3 | | 3(w+1)=2/7(w-1) | | –6+x=–13 | | 10a+a-5a=12 | | 4a=(-3)-a^2 | | I35=5(x+9) | | f(1)=75-1.5 | | 11-x=45-35x |

Equations solver categories