H(x)=(2x+1)(x-3)

Simple and best practice solution for H(x)=(2x+1)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=(2x+1)(x-3) equation:



(H)=(2H+1)(H-3)
We move all terms to the left:
(H)-((2H+1)(H-3))=0
We multiply parentheses ..
-((+2H^2-6H+H-3))+H=0
We calculate terms in parentheses: -((+2H^2-6H+H-3)), so:
(+2H^2-6H+H-3)
We get rid of parentheses
2H^2-6H+H-3
We add all the numbers together, and all the variables
2H^2-5H-3
Back to the equation:
-(2H^2-5H-3)
We add all the numbers together, and all the variables
H-(2H^2-5H-3)=0
We get rid of parentheses
-2H^2+H+5H+3=0
We add all the numbers together, and all the variables
-2H^2+6H+3=0
a = -2; b = 6; c = +3;
Δ = b2-4ac
Δ = 62-4·(-2)·3
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*-2}=\frac{-6-2\sqrt{15}}{-4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*-2}=\frac{-6+2\sqrt{15}}{-4} $

See similar equations:

| 18=6-6y | | 7(6y)-3(2y)=10 | | q/3=-6 | | 10^3x=5x | | 6x-4x=12+2x | | 18x-10=45 | | -4.5(x-9)=-18 | | 4y+42=16y–18 | | c(8)=-56 | | -4.5(x+9)=-18 | | 8y+6=10y-8+9y | | 1/5t=5 | | -28=x(-4) | | 81*x(^-2)=0 | | V=1/3x3.14(4)8 | | 2=1x1.05^x | | 900(.86)^x=100(1.14)^x | | -64-t)=12t | | 5(t+2/5)=-13 | | x=129+50 | | 176=4(8-7x6)+4x6 | | 129=55x | | 7.31+b=13.6 | | 26(3x+1)=180 | | 129=50+x | | X.²+y²=130 | | 1.6x=18 | | 3a^2+7=0 | | 129=x+50 | | 7.32+b=13.6 | | h2− 3=–1 | | -13.9+b/12.8=13.309 |

Equations solver categories