If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=(-4H-3)(H-3)
We move all terms to the left:
(H)-((-4H-3)(H-3))=0
We multiply parentheses ..
-((-4H^2+12H-3H+9))+H=0
We calculate terms in parentheses: -((-4H^2+12H-3H+9)), so:We get rid of parentheses
(-4H^2+12H-3H+9)
We get rid of parentheses
-4H^2+12H-3H+9
We add all the numbers together, and all the variables
-4H^2+9H+9
Back to the equation:
-(-4H^2+9H+9)
4H^2-9H+H-9=0
We add all the numbers together, and all the variables
4H^2-8H-9=0
a = 4; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·4·(-9)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{13}}{2*4}=\frac{8-4\sqrt{13}}{8} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{13}}{2*4}=\frac{8+4\sqrt{13}}{8} $
| 6+5=2n-9 | | 7^x^2=-49^x | | 5x-7=2x-4x+14 | | 7x^2=-49^x | | 5x+30=-2x | | 8x-x-7x=4 | | v−11=7 | | 20=k+2 | | -7(7x-5)=84 | | 9e+14=-5e+14+13e | | 6x+1=10x-5 | | 7x+9=-30 | | 6x-19=2x-19 | | F+8=3f | | 3*12+20=v | | -4=2p+0 | | 10x^3=30x | | Y=4x-12/x-2 | | 4x−3=6x+24x | | X²+3x-5=0 | | 4x^2+10=-39 | | (6x+9)+4x^2-7)=1 | | -3a+19a+a+-12a=15 | | 6-2w=w | | 2+6x+4x^2=0 | | x+7=(x-5)3 | | 5x-1-2x-2=24 | | x+7=(x-5)•3 | | (1/4)*x+10=(2/3)x | | 7(x+6)=63. | | 4x-8-10x=-40 | | x+7=(x-5) |